
1

Design and evaluation of multiple level data staging
for Blue Gene systems

Florin Isaila, Javier Garcia Blas, Jesus Carretero - University Carlos III of Madrid
Robert Latham, Robert Ross - Argonne National Laboratory

Abstract—Parallel applications currently suffer from a signifi-
cant imbalance between computational power and available I/O
bandwidth. Additionally, the hierarchical organization of current
Petascale systems contributes to an increase of the I/O subsystem
latency. In these hierarchies, file access involves pipelining data
through several networks with incremental latencies and higher
probability of congestion. Future Exascale systems are likely to
share this trait.

This paper presents a scalable parallel I/O software system
designed to transparently hide the latency of file system accesses
to applications on these platforms. Our solution takes advantage
of the hierarchy of networks involved in file accesses, to maximize
the degree of overlap between computation, file I/O-related
communication and file system access. We describe and evaluate
a two-level hierarchy for Blue Gene systems consisting of client-
side and I/O node-side caching. Our file cache management
modules coordinate the data staging between application and
storage through the Blue Gene networks. The experimental
results demonstrate that our architecture achieves significant
performance improvements through a high degree of overlap
between computation, communication, and file I/O.

Index Terms—MPI-IO, Parallel I/O, Parallel File Systems,
Supercomputers.

I. INTRODUCTION

The needs of scientific applications have driven a contin-
uous increase in scale and capability of leading parallel sys-
tems [13]. However, the improvement in rates of computation
has not been matched by an increase in I/O capabilities. For
example, earlier supercomputers maintained a ratio of 1GBps
of parallel I/O bandwidth 1GBps for every TFLOP, whereas in
current systems 1GBps for every 10TFLOPS [3] is the norm.
This increased disparity makes it even more critical that the
I/O subsystem be used in the most efficient manner.

Scalable I/O has been already identified as a critical issue
for PFLOP systems. Future exascale systems forecasted for
2018-2020 will presumably have O(1B) cores and will be hi-
erarchical in both platform and algorithms [1]. This hierarchy
will imply a longer path in moving data from cores to storage
and vice-versa, resulting in even higher I/O latencies, relative
to the rates of computation and communication in the system.

IBM’s Blue Gene supercomputers have a significant share
in the Top 500 lists and additionally bring the advantage of
a highly energy-efficient solution. Blue Gene systems scale
up to hundreds of thousands of cores, tightly inter-connected
through a high-performance scalable network. The architec-
tural separation of processing from the I/O system (Figure 1)
allow for tight packaging of low-power compute resources, but
it implies a higher number of hops from application processes

to storage, translating into a higher latency for file access.
For instance, file writes are pipelined through three different
networks (tree, Myrinet/Ethernet, and storage network) from
compute nodes through I/O nodes and storage servers to finally
reach storage. Every component of this heterogeneous network
contributes latency, reducing the file access performance seen
by the applications. Of particular concern is the tree network,
shared by all cores for I/O forwarding, which may be the
cause of significant bottlenecks if inefficiently used. At the
same time, this hierarchical system offers numerous opportu-
nities for performance optimizations through overlapping of
computation, communication, and disk I/O, if these activities
can be properly orchestrated.

Large computational resources are employed both for highly
coupled parallel applications as well as for loosely coupled
“many task” computations that communicate via file system
operations [28]. Both these categories of applications involve
data transfer between compute nodes and storage.

The main goals of this work are to analyze the potential for
high-performance I/O in supercomputer platforms and to offer
a user-transparent approach for optimization of data transfer
between applications and storage. More precisely, we aim
to increase the file access performance as seen by parallel
applications by hiding the latency of data transfers over the
different networks, without requiring any changes to the appli-
cations themselves. Given the increasing hierarchy of networks
involved in file accesses, our optimizations are focused on
maximizing the degree of overlap between computation, file
I/O related communication, and file system access.

This paper builds on our previous work [10], in which we
presented an asynchronous file access strategy based on a
file cache on the I/O nodes in a Blue Gene/L system. On
Blue Gene/L, the asynchronous file access approach is limited
by the lack of support for threads, preventing further local
overlapping of computation and I/O on compute nodes. The
limitations are imposed by the non-coherent L1 caches of the
two cores, forcing multi-threaded processes to run on a single
core. Consequently, on the I/O nodes, an asynchronous data
transfer approach could merely hide the latency of transferring
the data from I/O nodes to the storage servers: data movement
over the tree network could not be hidden. The limitations
discussed above have been removed from the Blue Gene/P
architecture. The Blue Gene/P has limited multithreading
support, but it is adequate for our caching strategies, and the
L1 caches of the four cores are coherent. In a further work [4]
we extended the solution presented in [10] with a prefetching
module on the I/O node and with a write-back module on the

2

pset

Compute nodes I/O nodes Storage nodes

Commodity networkTree networkTorus network

Enterprise storage
PowerPc 450 nodes with 2 Gbytes
of RAM each

PowerPc 450 nodes with
2 Gbytes of RAM each

Opteron servers with
8 Gbytes of RAM each

3D torus 5.1 GBytes/sec BG/P Tree 1.7 GBytes/sec 10 Gb Ethernet

Fig. 1. Blue Gene/P architecture overview. Processing is separated from the I/O nodes and storage nodes. Four-core compute nodes are interconnected
through a 3D torus network and are grouped in processing sets (psets). The I/O system calls of all cores in a pset are forwarded to exactly one master I/O
node through a tree network. Each I/O node mounts all file systems. The file system servers run on storage nodes connected to the I/O nodes through a
commodity network. Disks are attached to the storage nodes through a separate storage network.

compute node, taking advantage of the opportunities afforded
by this new hardware capability.

In this paper we further extend this previous work by
presenting a fully integrated two-level file cache solution. The
design includes a new prefetching module on the compute
node and its integration with the prefetching module on the
I/O node. Our extensive evaluation answers the following
questions: What is the benefit of employing multiple-level file
caching on compute nodes and I/O nodes? Does the use
of the torus network for file access optimization pay off?
Which asynchronous policies are suitable for data staging
(pipelining)? How do policies at different hierarchy levels
interact between each other? What coordination is needed?
What are good ratios/sizes of file caches on different levels of
the hierarchy? What access semantics are appropriate? How
to we ensure data consistency?

The remainder of the paper is structured as follows. Sec-
tion II reviews related work. The hardware and operating
system architectures of the Blue Gene/P are presented in
Section III. We discuss our novel solution for Blue Gene/P
system in Section V. The experimental results are presented
in Section VI. We summarize and discuss future work in
Section VIII.

II. RELATED WORK

Latency hiding in file access. Several researchers have
contributed techniques for hiding the latency of file system
accesses. Zhang et al [33] propose a collective I/O model
for loosely coupled applications based on an in-memory file
system, located on the compute nodes. While our work also
targets the locality of accesses, it differs in its focus on
coordinated, multiple-level data staging, including an I/O node
caching level. Active buffering is an optimization for MPI-
IO collective write operations [22] based on using an I/O

thread to manage write-back. Active buffering helps out MPI-
IO collective writes, while our approach benefits not only MPI-
IO collective writes but independent writes and even POSIX
writes.

Write-behind strategies [20] accumulate multiple, small
writes into large, contiguous I/O requests in order to better
utilize the network bandwidth. In this paper we present a
coordinated, multi-level write back strategy: small requests
are merged at compute nodes into file blocks asynchronously
written to I/O nodes, while I/O nodes simultaneously cache file
blocks and write them asynchronously to the storage nodes.

A number of works have proposed I/O prefetching tech-
niques based on application disclosed access patterns. In-
formed prefetching and caching [26] leverages application-
disclosed access patterns in order to make cost-efficient trade
offs between prefetching and caching policies. Chang and
Gibson [7] propose an automatic prefetching technique based
on speculative execution. A similar idea is used in [8] for
hiding the latency of read accesses for MPI-IO based accesses.
PC-OPT [17] is an off-line prefetching and caching algorithm
for parallel I/O systems. When PC-OPT has a priori knowledge
of the entire reference sequence, it generates a schedule of
minimal length.

In [6] the authors propose an I/O prefetching method based
on adaptive I/O signatures derived from file access pattern
classifications. In contrast, our prefetching approach is multi-
level and is based on views and collective I/O aggregation
patterns. DataStager [2] is a one-level data staging framework
for CrayXT machines based on a server-pull model. In turn
our focus is on data staging in a two-level cache hierarchy of
Blue Gene architecture. A performance model for overlapping
computation, communication and I/O is presented in [25].

Collective I/O. Collective I/O techniques merge small,
individual requests from compute nodes into larger, global

3

requests in order to optimize the network and disk perfor-
mance. Depending on where the request merging occurs, one
can identify two collective I/O methods. If the requests are
merged at I/O nodes, the method follows the disk-directed
I/O [18] approach. If the merging occurs at intermediary nodes
or at compute nodes, the method is called two-phase I/O [9].
Data shipping [27] is a GPFS I/O optimization that uniquely
binds each file block in a round-robin manner to a unique I/O
agent. All subsequent read and write operation on the file go
through the I/O agents, which ship the requested data between
the file system and the appropriate processes. Other works
have focused on improving the access locality of collective
I/O [19], [15], an approach we are extending to a multiple
level hierarchy. While using collective I/O techniques in order
to gather small requests on a client-side cache, our approach
is suitable to optimize both collective and independent I/O.

Parallel I/O on supercomputers. A limited number of
recent studies have proposed and evaluated parallel I/O so-
lutions for supercomputers. An implementation of MPI-IO for
Cray architecture and the Lustre file system is described in
[36]. In [35] the authors propose a collective I/O technique,
in which processes are grouped together for collective I/O
according to the Cray XT architecture. Yu et al. [30] present
a GPFS-based three-tiered architecture for Blue Gene/L. The
tiers are represented by I/O nodes (GPFS clients), network-
shared disks, and a storage area network. Our solution focuses
on the Blue Gene/P, extends this hierarchy to include the
memory of the compute nodes.

III. BLUE GENE/P

This section presents the hardware and operating system
architectures of Blue Gene/P.

A. Blue Gene/P Architecture

Figure 1 shows a high-level view of a Blue Gene/P system.
Compute nodes are grouped into processing sets, or “psets”.
Applications run in exclusivity on partitions, consisting of
multiples of psets. Each pset has an associated I/O node that
performs I/O operations on behalf of the compute nodes from
the pset. The file system components run on dedicated file
servers connected to storage nodes through a 10Gbit Ethernet
switch. Compute and I/O nodes use the same ASIC with
four PowerPC 450 cores, with core-private hardware-coherent
L1 caches, core-private stream prefetching L2 caches, and a
8 MBbytes of shared DRAM L3 cache.

Blue Gene/P compute nodes are interconnected by a 3D
torus (5.1 GBytes/s). A collective network (1700 MBytes/s)
with a tree topology provides support for a set of collective
communication operations and manages I/O traffic. A com-
modity 10 Gbit/sec Ethernet network interconnects I/O nodes
and file servers.

B. Operating System Architecture

The operating system provided by IBM for the BG/L and
BG/P systems [23], the compute node kernel (CNK), is a
light-weight operating system offering basic services such as

setting an alarm or getting the time. As shown in Figure
2, I/O system calls (e.g. file system calls, socket calls, etc.)
are forwarded through the tree collective network to the I/O
node by a Remote Procedure Call (RPC)-like mechanism. The
forwarded calls are replayed on the I/O node by the control
and I/O daemon (CIOD). CIOD executes the requested system
calls on locally mounted file systems and returns the results
to the compute nodes.

The ZeptoOS project [12] provides an open-source Linux
alternative to the IBM CNK. Under ZeptoOS, I/O forwarding
is implemented in a component called ZOID, as shown in
Figure 3 (a). The I/O forwarding process in ZeptoOS and
ZOID is similar to the one based on CIOD, in the sense
that I/O related calls are forwarded to the I/O nodes, where a
multi-threaded daemon serves them. However, there are two
notable differences in design and implementation between
CIOD-based and ZOID-based solutions. First, ZOID comes
with its own network protocol, which can be conveniently
extended with the help of a plug-in tool that automatically
generates the communication code for new forwarded calls.
Second, the file system calls are forwarded through ZOIDFS
[16], an abstract interface for forwarding file system calls.
ZOIDFS abstracts away the details of a file system API under
a stateless interface consisting of generic functions for file
create, open, write, read, close, and so forth. This facilitates
experimentation with alternative I/O strategies.

In our solution the I/O node-side cache as well as the
data staging modules on the I/O node are implemented under
ZOIDFS. A comparison between ZOIDFS based I/O forward-
ing pipeline and our solution is shown in Figure 3. Further
details about our solutions are given in the following sections.

IV. ARCHITECTURE OVERVIEW

Our proposed solution is based on the multi-tiered archi-
tecture depicted in Figure 4. The five tiers of the architecture
are: the application tier, the client-side I/O forwarding tier, the
client-side file cache management tier, the I/O-side file cache
management tier, and the storage system tier.

Application tier. Applications run on a set of compute
nodes and can be parallel MPI programs or a collection of
sequential applications. Access to the file system is performed
via MPI-IO or POSIX calls that are translated to forwarded
I/O calls.

Client-side I/O forwarding tier. Client-side I/O forwarding
pushes file accesses to the next tier through the scalable
torus network. This forwarding is performed on-demand, when
the application issues a file access (POSIX or MPI-IO). The
POSIX interface is implemented using FUSE [11], while
MPI-IO support is provided via the ROMIO [32] MPI-IO
implementation.

Client-side file cache management tier. The client-side
file cache module manages a file cache close to application
processes and efficiently transfers data between applications
and the I/O subsystem. Because the tree network is shared
among all the processes inside a pset, it may represent a
bottleneck if used in an uncoordinated manner. The proximity
of the cache to application processes enables low-latency

4

ke
rn

el
 sp

ac
e

us
er

 sp
ac

e

compute node I/O node

CIOD daemon

VFS

Application

Call forwarding

PVFS2 client
MPI-IO

 Tree
network

storage node

Commodity
 network

POSIX

Fig. 2. File I/O forwarding for IBM solution. Applications access the file system through the MPI-IO or POSIX interface. MPI-IO is implemented on top of
POSIX file system calls. POSIX calls are forwarded in an RPC-like manner to the I/O nodes. The forwarded calls are served on the I/O node by a user-level
daemon called the CIOD. The CIOD executes the file system call on behalf of the compute node through the VFS interface, which communicates with a
local PVFS2 client. The PVFS2 client sends the request on to the PVFS2 servers running on the storage nodes. The call return value and data are sent back
to the compute node using the tree network as well.

ke
rn

el
 sp

ac
e

us
er

 sp
ac

e

compute node I/O node

Commodity
 network

Application

MPI-IO I/O node-side cache
ZOIDFS server

 Tree
network

3D
torus

Write-back

 View

aggregator node

PVFS

storage node

GPFS

POSIX

ke
rn

el
 sp

ac
e

us
er

 sp
ac

e

compute node I/O node

Commodity
 network

Application

MPI-IO
ZOIDFS server

 Tree
network

PVFS

storage node

GPFSPOSIX

Prefetching

Client-side cache

ZOIDFS client

Write-back Prefetching

ZOIDFS client

(a)

(b)

Fig. 3. File I/O forwarding in ZeptoOS. (a) ZOIDFS based solution without caching. MPI-IO and POSIX calls are mapped to the abstract file system
interface, ZOIDFS, and forwarded to the I/O nodes. The ZOID daemon acts as a ZOIDFS server and maps ZOIDFS calls onto specific file systems. (b)
ZOIDFS with client-side and I/O-side caching. Applications access the file system through MPI-IO or POSIX interface. POSIX may be implemented on top
of MPI-IO. The MPI-IO calls are implemented based on MPI communication and are performed with cooperation by aggregator nodes. A client-side cache,
write-back, and prefetching modules manage data on each aggregator. The aggregator nodes forward ZOIDFS calls through ZOID to the I/O node. I/O node
services the ZOIDFS calls either from cache or by contacting the appropriate file system.

access to recently accessed data [28], and asynchronous data
transfer from cache to the I/O subsystem over the tree network,
hiding tree network access latency.

The client-side file cache is organized as a distributed file
cache, stored on the local memories of compute nodes. A
client-side cache management module runs on each node man-
aging a local cache. Data is forwarded from/to other compute
nodes through the upper client-side I/O forwarding tier, and
from/to associated I/O nodes through the I/O forwarding layer.

I/O-side file cache management tier. The I/O-side file
cache management tier provides file caching close to the
storage system (i.e. file system) and offers efficient transfer
methods between I/O nodes and the storage system. As in the
case of the client-side file cache management tier, data staging
is managed in two modules operating on a file cache: write-
back and prefetching modules. Each of these modules acts in
coordination with the corresponding module on the compute
node side.

Storage system. The storage system consists of file system
servers running on storage nodes and accessing disks over a
storage area network. File systems are mounted on I/O nodes
and accessed via kernel interfaces.

V. DATA STAGING

In Blue Gene systems, file system access implies pipelining
data through three different networks (tree, commodity and
storage network) from compute nodes through I/O nodes and
storage servers to finally reach the storage. A bottleneck in
any of these networks may be propagated up to applications.
The data staging is designed to hide the latency of the
transfers through these networks and, therefore, reduce the
probability of applications perceiving I/O congestion. Our
solution addresses two potential hot spots in the Blue Gene
architecture: the tree network and the file system. The tree
network is especially problematic, given its shared use by all
the processors in a pset. The file systems are also shared
by the whole system, and they may provide unexpectedly
slow service to a particular partition when data intensive
applications are run in other partitions.

In this section we discuss how our system manages data
staging between client-side and ION-side caches and how
write-back and prefetching are integrated into this multi-tier
system.

5

I/O nodes

Application
nodes

Storage
 nodes

Aggregator
nodes Write-back module Prefetching module

Client-side cache

C
om

pu
te

 n
od

es

PVFS

PVFS libraryGPFS library

ZOIDFS
File cache

GPFS servers PVFS servers

GPFS

Tree network

Application

Commodity network

Logical viewPhysical view

Client-side
 file cache

management

I/O-side
 file cache

management

Storage
systems

Application

Torus network

File view

POSIXMPI-IO

Write-back module Prefetching module

I/O-side cache

Client-side
I/O forwarding

Fig. 4. Blue Gene cache architecture organized on five tiers: application, client-side I/O forwarding, client-side cache, I/O node-side cache and storage.
Applications issue file access calls through POSIX or MPI-IO interfaces. The client-side I/O forwarding layer transfers data between applications and the
client-side cache module through the torus network. The client-side file cache management tier orchestrates caching on the compute nodes, offers access to
the applications (optionally through views), and transfers data between compute nodes and I/O nodes over the tree network. The I/O node -side file cache
management tier handles caching on I/O node, serves requests from the client-side file cache management tier, and accesses file systems over the commodity
network. The storage system includes GPFS and PVFS file systems.

Block 0
Client-side cache

Block 4
Block 8
Block 12

Block 1
Client-side cache

Block 5
Block 9
Block 13

Aggregator 0 Aggregator 1

Block 2
Client-side cache

Block 6
Block 10
Block 14

Block 3
Client-side cache

Block 7
Block 11
Block 15

Aggregator 0 Aggregator 1

Block 2
I/O node-side cache

Block 3
Block 6

Block 10

Block 7

Block 11
Block 14

pset 0 pset 1

I/O node 1

Tree network

Torus network

Commodity network

Block 0

Storage node 0

Block 2
Block 4

Block 8

Block 6

Block 10
Block 12

Block 1

Storage node 1

Block 3
Block 5

Block 9

Block 7

Block 11
Block 13

Block 0
I/O node-side cache

Block 1
Block 4

Block 8

Block 5

Block 9
Block 12

I/O node 0

Fig. 5. An example offile mapping in our system. A file is mapped over four aggregators in two psets, with two aggregators per pset. The file blocks held by
aggregators are mapped onto the I/O nodes in charge of the corresponding pset. Each I/O node caches and manages access to the file system blocks mapped
to aggregators in their pset. Note that there may be exactly one copy of a file block at each level. For instance, the file block 2 may be cached only in pset
1 at aggregator 2, I/O node 1, and storage node 0.

6

A. Client-side file cache

The client-side cache absorbs writes from applications and
hides the latency of data movement to and from I/O nodes over
the tree network. An aggregator on compute nodes combines
small accesses into larger file system blocks. Aggregators were
initially used in ROMIO [32] for collective I/O implementa-
tions such as two-phase I/O [32] and view-based I/O [5]. In our
solution the I/O aggregators participate not only in collective
I/O operations but also in independent I/O. The I/O operations
of each aggregator are performed in a dedicated I/O thread
that manages both on-demand and asynchronous file-related
communication with the I/O node. All file accesses from
application processes are sent through client-side forwarding
layer to the aggregators, which serve them either from the
local cache, from the cache of another aggregator, or via the
I/O thread. In the current implementation processes perform
synchronous writes to the aggregator, while the aggregator
asynchronously performs resulting file writes to the associated
I/O node in the dedicated I/O thread. An additional optimiza-
tion would allow application processes to forward file accesses
asynchronously to the aggregators, making a further increase
in the overlap between computation and I/O possible. This
optimization is a subject of future work.

Files blocks are mapped in a round-robin manner over all
the aggregators in the application’s partition. Each file block
is mapped to exactly one aggregator. This aggregator interacts
directly with the I/O node connected to the pset. Figure 5
shows an example of a file mapped on a partition consisting
of two psets, with two aggregators per pset. File block 2 can
be cached only once at aggregator 2 and at the I/O node 1
and on the storage node 0. This also represents the transfer
pipeline for file access.

The number of aggregators is a configurable parameter;
by default, all the compute nodes act as aggregators. The
replacement policy of each aggregator cache is LRU. The
application accesses the client-side cache of other processes
through the torus network.

Non-contiguous accesses can be optimized through view-
based I/O [5]. A view is an abstraction that allows application
to see non-contiguous regions of a file as contiguous. View-
based I/O leverages this abstraction for implementing an
efficient non-contiguous strategy. When defined, the view-to-
file mappings are sent to aggregators, where they are stored
in memory for subsequent use. At access time, contiguous
view data can be transferred between compute nodes and
aggregators, avoiding many small network transfers. Using
the view mapping, the aggregator can locally perform scat-
ter/gather operations between view data and file blocks. Addi-
tional advantages of views are that they compactly represent
access patterns and that they may be used as hints to future
access patterns. This last feature is leveraged by the client-side
prefetching module.

B. I/O-side file cache

The I/O-side cache absorbs blocks transfered from the
client-side cache and hides transfers between I/O nodes and
file systems. The replacement policy of the I/O node-side

cache is LRU. The I/O-side file cache management layer is
integrated into the ZOID daemon running on each I/O node.
The daemon receives ZOIDFS requests from the compute
nodes and serves them from the cache. The communication
with the compute nodes is decoupled from the file system
access, allowing for a full overlap of the two operations.
An I/O thread is responsible for asynchronously accessing
the file systems and incorporates write-back and prefetching
functionality.

C. Two-level write-back

After a compute node issues a file write, data is pipelined
from compute nodes through the I/O nodes to the appropriate
file system. An application write request is transfered by
client-side I/O forwarding tier to the client node responsible
for that file block. The cached file blocks are marked dirty, the
application is notified of a successful transfer, and computation
resumes. A write-back module on clients is responsible for
flushing the data from client-side cache to the I/O node
attached to that pset. On the I/O node another write-back
module is in charge of caching the file blocks received from
the compute nodes and flushing them to the file system over
the commodity network.

The write-back policy used in this work (for both caching
levels) is based on a high/low water mark for dirty blocks.
The high and and low water marks are percentages of dirty
blocks. The flushing of dirty blocks is activated when a high
water mark of blocks is reached. Once activated, the flushing
continues until the number of dirty blocks falls below a low
water mark. Blocks are chosen to be flushed in Least Recently
Modified (LRM) order.

In order to efficiently hide latency, coordination along the
pipeline is critical. We highlight two important aspects. First,
the coordination has to take into account the application
requirements. For instance, in parallel applications, processes
frequently write shared files in non-overlapping manner, show-
ing a good inter-process spatial locality. For these applications
the high and low water marks should be sized in such a manner
that makes it improbable that incompletely written blocks are
transferred. On the other hand, blocks of files written by
sequential applications may be immediately flushed. Second,
the coordination must take into consideration the network
characteristics and loads. We have implemented mechanisms
to perform this coordination and will evaluate some potential
policies in this work.

D. Two-level prefetching

Our prefetching solution is split across compute nodes and
I/O nodes, with each instance enforcing its own prefetching
policy and driving prefetching with an I/O thread. In this paper
we present two simple policies implemented on the compute
node and I/O node, respectively.

The client-side prefetching policy is based on two main
parameters: mapping of files to aggregators and views. If no
view is declared, the view is by default the whole file. The
application process sends the view to all file aggregators after

7

declaration, as described in Section V-A. Any time an on-
demand read request misses the client-side cache, it is issued
immediately. While it is being served, the subsequent file view
offsets are used to calculate a new prefetching request, which
is issued to the appropriate I/O node. A configurable number
of prefetching requests can be generated. The views bring
the advantage of generating any type of prefetching pattern,
including the common sequential, simple and multiple-strided.

The I/O node prefetching is based on the mapping of
aggregators to I/O nodes. Whenever an aggregator makes
an on-demand request to an I/O node, it is first served
and, subsequently, the next file blocks mapped to the same
aggregator are computed and prefetch requests are issued.
Prefetching requests of aggregators become on-demand file
requests at the I/O node, driving prefetching at that layer as
well.

E. File access semantics and consistency

Our solution provides a relaxed file system semantics,
motivated by the well-known fact that POSIX-like semantics
are not suitable for HPC workloads [14]. While a file is open,
its data may reside any level of the cache hierarchy. Data
are ensured to have reached the final storage after file close
or after a file sync has been executed. In particular, MPI
provides three levels of consistency: sequential consistency
among all accesses using a single file handle, sequential
consistency among all accesses using file handles created from
a single collective open with atomic mode enabled, and user-
imposed consistency among accesses other than the above. The
atomic mode for independent I/O file accesses has not been
implemented, i.e. sequential consistency is not guaranteed for
concurrent, independent I/O with overlapped access regions.
This approach is similar to the one taken in PVFS, and it is
motivated by the fact that overlapping accesses are not frequent
for parallel applications.

VI. EXPERIMENTAL RESULTS

The experiments presented in this paper have been per-
formed on the Surveyor Blue Gene/P system from Argonne
National Laboratory. The system has 1024 quad-core 850
MHz PowerPC 450 processors with 2 GB of RAM each.
All the experiments were run in Symmetric Multiprocessor
mode (SMP), in which a compute node executes one process
per node with up to four threads per process. The PVFS2
[21] file system is mounted on all I/O nodes and stripes files
round-robin over four storage servers. We used a stride size
of 1MBytes, which is equal to the page size of both levels of
caching in our system.

A. Benchmarks

In the evaluations we use two benchmarks: SimParIO syn-
thetic benchmark and NASA’s BTIO benchmark.

SimParIO is a synthetic benchmark simulating the behavior
of data-intensive applications, which have been shown to
alternate the computation and I/O [18], [24], [29], [31]. The
benchmark consists of a configurable number of alternating

computation and I/O phases. The compute phases are simu-
lated by idle spinning. In the I/O phase all the processes write
non-overlapping records to a file. The configurable parameters
of this benchmark are the following: the compute time, the
number of phases, the record size, the number of records, and
the access stride.

NASA’s BTIO benchmark [34] solves the block-tridiagonal
(BT) problem, which employs a complex domain decomposi-
tion across a square number of compute nodes. The execution
alternates computation and I/O phases. Initially, all compute
nodes collectively open a file and declare views on the relevant
file regions. After every five computing steps, the compute
nodes write the solution to a file through a collective operation.
At the end, the resulting file is collectively read, and the
solution is verified for correctness.

B. File write performance

This experiment evaluates the dependence of the file write-
back performance on the high-water marks of the file caches
on the compute node and I/O node. The size of client-side
cache on a compute node is fixed at 64 MBytes. All the
compute nodes cache data (i.e., act as aggregators). The size of
the I/O node cache is 512 MBytes. The block size is 1 MByte.
SimParIO was run with 64 and 256 processes (one process
per compute node) and was configured to write a total of
2,560 MBytes, i.e. each process writes a record of 1 MByte in
40 phases for 64 processes and 10 phases for 256 processes.

The high water mark for client-side and I/O node-side
caches was varied from 0% to 100%. A high water mark value
of 0% signifies that flushing is always activated, while 100%
value that flushing is activated when the whole cache is full.
Figures 6 and 7 show the aggregate file write throughput for
64 and 256 processes with compute phases of 0 ms (left) and
500 ms (right). When computing the throughput, the time to
close the file is included.

Note that in most cases the write throughput increases with
the decrease of the high water mark on the I/O nodes. The
best performance is obtained for 0%, i.e. when flushing is
always activated. This indicates that a continuous write of dirty
blocks from the I/O node to the file system is the best strategy.
However, a 0% high water mark on the compute nodes does
not bring performance benefits. The peaks are obtained for
6.25% and 12.5% for 64 nodes and 3.12% and 6.25% for 256
nodes. The values of the client-side high water mark for 256
node peak performance are smaller than those for 64 nodes, as
the size of both client-side caches and I/O caches are scaled
up by a factor of four, thereby reducing the data pressure in
the write pipeline.

For compute phases of 500ms there is more potential
for overlap between computation and I/O. However, when
comparing with a 0ms compute phase, there is a significant
performance increase only for small high water marks of the
client-side caches. This is explained by the fact that small val-
ues of high water marks increase the probability of continuous
flushing and, therefore, of overlapping I/O with computation.
The efficiency of a flushing strategy can be estimated by the
time to completely flush the file data at file close: the smaller

8

0%

1%

3.
12

%

6.
25

%

12
.5
%

25
%

50
%

100

200

300

400

500

0%

1%

3.
12

%

6.
25

%

12
.5
%

25
%

50
%

10
0%

CS high water mark
 IONS high water mark

Aggregate file write throughput for 64 CN

500 msec compute phase

400-500

300-400

200-300

100-200

0%

1%

3.
12

%

6.
25

%

12
.5
%

25
%

50
%

100

200

300

400

500

0%

1%

3.
12

%

6.
25

%

12
.5
%

25
%

50
%

10
0%

IONS high water mark
CS high water mark

Aggregate file write throughput for 64 CN

0 sec compute phase

Fig. 6. File write performance for 64 processors, client-side cache size of 64 MBytes, I/O node-side cache size of 512 MBytes, variable high water mark,
and 0 and 500ms compute phases. The scales of x-axis and y-axis are logarithmic. The time used to calculate the aggregate throughput includes the time to
flush the caches on file close. The throughput increases with the decrease of the high water mark on the I/O nodes and is highest for client-side high water
mark of 6.25% and 12%. In the presence of computation, the throughput increases for small, client-side high water marks.

0%

1%

3.
12

%

6.
25

%

12
.5
%

25
%

50
%

400

600

800

1000

0%

1%

3.
12

%

6.
25

%

12
.5
%

25
%

50
%

10
0%

CS high water mark
 IONS high water mark

Aggregate file write throughput for 256 CN

0 sec compute phase

0%

1%

3.
12

%

6.
25

%

12
.5
%

25
%

50
%

400

600

800

1000

0%

1%

3.
12

%

6.
25

%

12
.5
%

25
%

50
%

10
0%

CS high water mark
 IONS high water mark

Aggregate file write throughput for 256 CN

500 msec compute phase

1000-1050

800-1000

600-800

400-600

Fig. 7. File write performance for 256 processors, client-side cache size of 64 MBytes, I/O node-side cache size of 512 MBytes, variable high water mark,
and 0 and 500ms compute phases. The time used to calculate the aggregate throughput includes the time to flush the caches on file close. The throughput
increases with the decrease of the high water mark on the I/O nodes and is highest for client-side high water mark of 3.12% and 6.25%.

the close time, the more efficient the strategy. Figure 8 plots
in parallel the aggregate write throughput and file close time
for 64 nodes, 0s and 500ms compute phase, and 0% high
water mark for I/O node-side cache. The figure confirms that
the aggregate throughput is inversely proportional to the close
time.

C. File cache sizes

This experiment evaluates the dependence of file write-back
performance on the sizes of the file caches on the compute
node and I/O node. The experiment was run on 64 compute
nodes inside a pset. The high water mark for client-side cache
was 6.25%, and for the I/O node-side cache 0%.

The size of client-side cache on a compute node was varied
from 0 MBytes (no caching) to 64 MBytes. The size of
I/O node-side cache was varied from 0 MBytes (no caching)
to 512 MBytes. All the compute nodes cache data (act as
aggregators). The file block size is 1 MByte. SimParIO was
configured to write a total of 2,560 MBytes, i.e. each process
repeatedly writes a record of 1 MByte in 40 phases.

Figure 9 shows the aggregate file write for compute phases
of 0 ms (left) and 500 ms (right). When computing the
throughput, the time to close the file is included. The graphs
show that the client-side caches bring a substantial perfor-
mance improvement. This improvement is almost independent
of the size of the I/O caches. The best results are obtained

9

0

10

20

30

40

50

60

70

80

0

50

100

150

200

250

300

350

400

0%

3%

6.
25

%

12
.5

%

25
%

50
%

10
0%

C
lo

se
 T

im
e

(s
ec

o
nd

s)

A
g

g
re

g
at

e
th

ro
ug

hp
ut

 (M
b

yt
es

/s
ec

)

Client-side high water mark

 Write throughput 64 nodes
0 sec compute phase

Aggregate throughput
 Close time

0

10

20

30

40

50

60

70

80

0

50

100

150

200

250

300

350

400

0%

3%

6.
25

%

12
.5

%

25
%

50
%

10
0%

C
lo

se
 T

im
e

(s
ec

o
nd

s)

A
g

g
re

g
at

e
th

ro
ug

hp
ut

 (M
b

yt
es

/s
ec

)

Client-side high water mark

Write throughput 64 nodes
500 msec compute phase

Aggregate throughput
 Close time

Fig. 8. The figure plots the aggregate write throughput and file close time for 64 nodes, 0ms and 500ms compute phase and 0% high water mark for I/O
node-side cache. The close time can be seen as an efficiency metric of a flushing strategy: the graph shows that aggregate throughput is inversely proportional
to the close time.

0

100

200

300

400

500

600

700

IONS w/o
cache

16
 64
 128
 256
 512
A
g

g
re

g
at

e
th

ro
ug

hp
ut

 (M
B

yt
es

/s
ec

)

I/O node-side cache size (Mbytes)

Aggregate file write throughput for 64 CN
0 sec compute phase

CS w/o cache
 16MB CS cache
 32MB CS cache

64MB CS cache
 128MB CS cache

0

100

200

300

400

500

600

700

IONS w/o
cache

16
 64
 128
 256
 512
A
g

g
re

g
at

e
th

ro
ug

hp
ut

 (M
B

yt
es

/s
ec

)

I/O node-side cache size (Mbytes)

Aggregate file write throughput for 64 CN
500 msec compute phase

CS w/o cache
 16MB CS cache
 32MB CS cache

64MB CS cache
 128MB CS cache

Fig. 9. Effect of file cache sizes on the aggregate file write throughput for a pset of 64 processors,6.25% high water mark for client-side cache, 0% high
water mark for I/O node-side cache, 0ms and 500ms compute phase. The ratio between the best client-side cache size and I/O node-side caches size is 64,
corresponding to the number of compute nodes in the pset and to the number of aggregators.

for client-side caches of 8 MBytes and I/O node-side caches
of 512 MBytes. The ratio between the best client-side cache
size and I/O node-side caches size is 64, corresponding to the
number of compute nodes in the pset and to the number of
aggregators. This result suggests the optimal size of the I/O
node cache to be equal to the sum of the client-side caches in
the corresponding pset. Further increases of this cache appear
even to worsen the performance. This could be explained by
the fact that a larger cache may take a longer time to be flushed
when the file is closed.

Expectedly, the size of the cache closer to the application
(client-side cache) appears to influence the performance in
a stronger way than a remoter cache (I/O-side cache). The
comparison of the two graphs for 0ms and 500ms shows that a
better potential to overlap computation brings only a marginal
performance benefit for client-side caches larger or equal to
16 MBytes.

D. Prefetching

This experiment evaluates the performance of prefetching
into the client-side and I/O node-side caches. The experiment
was run on 64 compute nodes inside a pset. The size of the
client-side cache on a compute node was fixed at 64 MBytes
and the size of the I/O node-side cache at 512 MBytes. All
the compute nodes cache data (act as aggregators). The file
block size is 1 MByte. SimParIO was configured to read a
total of 2,560 MBytes, i.e. each process repeatedly reads a
record of 1 MByte in 40 phases. No views were used; a further
evaluation of the prefetching based on views is presented in
the next section using the BTIO benchmark.

We evaluate prefetching configurations, varying the number
of prefetched file blocks. For client-side caches the number of
prefetched blocks was 0 (no prefetching), 4, 8, and 16. On the
I/O nodes this number was varied from 0 (no caching) to 256.
Figure 10 shows the aggregate file read for compute phases
of 0ms (left) and 500ms (right).

As expected, the client-side prefetching has a stronger influ-

10

0

100

200

300

400

500

600

700

800

0
 8
 16
 32
 64
 128

A
g

g
re

g
at

e
th

ro
ug

hp
ut

 (M
B

yt
es

/s
ec

)

I/O node-side prefetch (number of buffers)

Aggregate read throughput 64 nodes
500ms compute time

0 CS buffers
 4 CS buffers
 8 CS buffers

16 CS buffers
 32 CS buffers

0

100

200

300

400

500

600

700

800

0
 8
 16
 32
 64
 128

A
g

g
re

g
at

e
th

ro
ug

hp
ut

 (M
B

yt
es

/s
ec

)

I/O node-side prefetch (number of buffers)

Aggregate read throughput 64 nodes
0ms compute time

0 CS buffers
 4 CS buffers
 8 CS buffers

16 CS buffers
 32 CS buffers

Fig. 10. Effect of prefetching window on the aggregate file read throughput for a pset of 64 processors, for 0 , 4, 8, and 16 prefetched client-side caches
blocks and 0, 8, 16, 32, 64, 128, 256 prefetched I/O node-side caches blocks. Client-side prefetching has a stronger influence on the read performance than
I/O-side prefetching. It brings up to one order of magnitude improvement in presence of computation.

0
 500
 1000
 1500
 2000

1

4

7

10

13

16

19

22

25

28

31

34

37

40

Aggregate throughput (Mbytes/sec)

It
er

at
io

n

Aggregate file read throughput for 64 CN

0 sec compute phase

0
 500
 1000
 1500
 2000

1

4

7

10

13

16

19

22

25

28

31

34

37

40

Aggregate throughput (Mbytes/sec)

It

er
at

io
n

Aggregate file read throughput for 64 CN

500 msec compute phase

Fig. 11. Histogram of the 40 phases of file read for the 16 blocks read-ahead, for 0ms and 500ms compute phase. Prefetching starts to pay off in phase 24
for no compute phase and in phase 20 for a 500ms compute phase.

ence on the read performance than I/O-side prefetching. When
no client-side prefetching is used, the I/O node prefetching
does not appear to bring any performance benefit. Client-side
prefetching brings more than one order of magnitude improve-
ment, especially when the compute phase to be overlapped is
increased to 500ms.

In order to better understand the impact on prefetching we
plot in Figure 11 the aggregate read throughput of the 40
individual read phases for two cases from Figure 10, with 16
prefetched blocks on the I/O node and both 0 ms and 500 ms
compute phase. Prefetching begins to pay off in phase 24 for
no compute phase and in phase 20 for a 500 ms compute
phase. The prefetching is substantially more efficient when it
is overlapped with computation: all the phases after phase 20
appear to be serviced from the client-side cache.

E. Scalability

This evaluation aims to test the solution scalability in terms
of file size and number of compute nodes. Figure 12 shows the
results of running SimParIO benchmark on 64 to 512 compute

nodes. The size of client-side cache is fixed at 128 MBytes. All
the compute nodes cache data (act as aggregators). The size of
each I/O node cache is 512 MBytes. The high water mark for
client-side cache was 12.5%, and for the I/O node-side cache
12.5%. Compute nodes perform 40 iterations. In each iteration,
the file access pattern is strided with a record size of 64 KBytes
and a stride size of 4 MBytes. The maximum file size produced
by 512 processes was 0.5 TBytes. We evaluate the file writes
of the SimParIO benchmark for three different setups: two-
phase I/O over IBM solution (CIOD), view-based I/O with
client-side caching (VBIO-CS), and view-based I/O with both
client-side and I/O node-side caching (VBIO-CS-IONS). The
graphs show that file access performance scales well with the
number of compute nodes for both read and write operations.
The performance obtained is higher when both cache levels
are employed and in presence of computation.

F. BTIO benchmark

In this section we evaluate our data staging approach for the
BTIO benchmark. The client-side cache on each compute node

11

0

200

400

600

800

1000

1200

1400

1600

1800

64
 128
 256
 512

A
g

g
re

g
at

e
th

ro
ug

hp
ut

 (M
B

yt
es

/s
ec

)

Number of processes

SimParIO. Aggregate file write throughput

CIOD
 VB-CS

VB-CS-IOS
 VB-CS-IOS 500ms

0

200

400

600

800

1000

1200

1400

1600

1800

64
 128
 256
 512

A
g

g
re

g
at

e
th

ro
ug

hp
ut

 (M
B

yt
es

/s
ec

)

Number of processes

SimParIO. Aggregate file read throughput

CIOD
 VB-CS

VB-CS-IOS
 VB-CS-IOS 500ms

Fig. 12. Scalability in terms of file size and number of compute nodes. Aggregate file write and read throughputs for 64 to 512 processes, and 0ms to 500ms
compute phases.

is fixed at 64 MBytes, while the I/O node-side cache is fixed
at 512 MBytes. All application nodes acted as aggregators.
We report the results for BTIO class B producing a file of
1.6 GBytes.

1) File writes: We evaluate the file writes of the BTIO
benchmark for four different setups: two-phase I/O over IBM
solution (CIOD), view-based I/O with no caching (VBIO),
view-based I/O with client-side caching (VBIO-CS), and view-
based I/O with both client-side and I/O node-side caching
(VBIO-CS-IONS). Figure 13 shows the total time breakdown
into compute time, file write time, and close time for BTIO
class B. The close time is relevant because all data are flushed
to the file system when the file is closed. We notice that in
all solutions the compute time is roughly the same. VBIO
reduces the file write time without any asynchronous transfers.
VBIO-CS reduces both the write time and close time, as data
are asynchronously written from compute node to I/O node.
For VBIO-CS-IONS, the network and I/O activity are almost
entirely overlapped with computation. We conclude that the
performance of the file writes gradually improves with the
increasing degree of asynchrony in the system.

2) File reads: BTIO performs all forty read phases in
sequence, without any interleaving compute phases. In order to
evaluate the effect on prefetching in presence of computation,
a computation phase was inserted between consecutive read
phases.

Figure 14 displays the file read performance without
prefetching (for two-phase I/O and view based I/O) and with
prefetching for 0ms, 500ms, and 1000ms compute phases. We
note that prefetching pays off when the client-side prefetching
pool has at least 8 blocks and computation is present. The
worst time was obtained for 2 prefetched file blocks and
no computation and the best for 16 prefetched blocks and 1
second compute phase. Figure 15 shows the measured times
of the 40 file read operations for 64 processors for the these
two cases. We note that, in the worst case depicted on the
left, the phase time decreases starting with phase 19, and in
the best case shown on the right with phase 11. This indicates
the timing when the read accesses start to hit the cache. In

0

10

20

30

40

50

60

70

80

90

CIOD
 VBIO
 VBIO-CS
 VBIO-CS-IONS

S
ec

o
nd

s

BTIO Write Class B 64 processes

Computation
 Close
 Write

0

5

10

15

20

25

30

35

40

CIOD
 VBIO
 VBIO-CS
 VBIO-CS-IONS

S
ec

o
nd

s

BTIO Write Class B 256 processes

Computation
 Close
 Write

Fig. 13. BTIO class B file write times for 64 and 256 processors. The
performance of the file writes gradually improves with the increasing degree
of asynchrony in the system: the best overlap is achieved when both client-side
cache and I/O node-side cache are used.

the best case, the presence of computation causes a more
uniform distribution and a reduction of access times in the
initial phases.

VII. DISCUSSION

Our results demonstrate that a significant performance im-
provement can be obtained from multiple level data staging.
The employment of client-side and I/O-node caches helps

12

0

5

10

15

20

25

30

35

0 CS
prefetch

2 CS
prefetch

4 CS
prefetch

8 CS
prefetch

16 CS
prefetch

32 CS
prefetch

T
im

e
(s

ec
o

nd
s)

BTIO Read Class B read 64 processes

CIOD
 VBIO
 VBIO-CS 0 ms

VBIO-CS 500 ms
 VBIO-CS 1000 ms

Fig. 14. BTIO class B file read times for 64 processors for client-side
prefetching pool sizes of 0, 2, 4, 8, 16 file blocks. Prefetching is improved
only in the presence of computation and for client-side prefetching pools of
at least 8 blocks.

overlap the latency for both file writes and reads and may
contribute to up to a five-hold increase for writes and an order
of magnitude for reads, depending on various parameters. As
expected, the client-side cache contribution to the performance
improvement is predominant. Applications access the client-
side cache over the torus network, contributing a decrease in
the number of small transfers over the tree network and to
better distribution of transfers over time.

The write-back performance shows a strong dependence
on the flushing high water mark of both client-side and I/O
node-side cache. The performance difference between best and
worst figures for these two parameters can be as high as two-
fold. In the considered cases, the best policy appears to be
a combination of continuous flushing on the I/O nodes (0%
high water mark) and more bursty flushing on the compute
nodes (high water mark greater than 0). The size of the client-
side cache may also cause a performance difference as high as
two-fold. However, the size of the I/O node-side cache seems
to have a weak effect on performance.

Prefetching brings performance benefits of up to one order
of magnitude depending on the prefetching pool sizes on both
compute nodes and I/O nodes. Prefetching into the client-side
cache is critical for performance in all cases. Prefetching into
the I/O node is important when application read operations are
not interleaved with computation. In this case the I/O node
prefetching works in parallel with on-demand prefetching on
the compute node, increasing the pipeline parallelism. The
obtained results suggest suitable policies for data staging. The
results from Figure 6 indicate that the write-back policy should
be chosen by the following rule of thumb: the farther from the
storage the cache, the lower the high watermark. On the other
hand, Figure 10 shows that a simple prefetching policy em-
ployed by client-side aggregators efficiently propagates reads
to the next levels and provides large performance benefits.
The interaction between levels is crucial in order to optimize
the performance. In this work we have mainly studied the
interaction between different levels of either write-back or
prefetching in isolation. A further analysis is necessary in
order to better understand the cross-interactions between write-

back and prefetching at different levels.
The client-side cache scales with the number of aggregators.

The results suggest that, for efficient pipelining, client-side and
I/O-side caches have to be sized in such a way that the I/O
node cache size should be at least equal to the sum of the
client-side caches in the corresponding pset.

The solution presented in this paper was implemented on
Blue Gene systems, but it can be easily extended to other
systems. The client-side and I/O modules are generic and
portable, and the implementation can be used unmodified on
clusters or any other supercomputers. This can be achieved
either by extending the ZOID back-end to these systems
or, alternatively, through an ADIO module for file systems
mounted on the I/O nodes.

To summarize, a coordination policy for multi-layer caching
must take into account various aspects related to the file
I/O pipeline including application requirements, size of the
caches, flushing water marks, and prefetch window sizes. The
evaluation in this paper, based on a subset of this large param-
eter space, demonstrated the huge potential for performance
improvement using this approach.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents the design, implementation and evalu-
ation of multiple level data staging for Blue Gene systems.
The data staging is based on a two-level hierarchical caching
system, consisting of an application-close client-side cache and
a storage-close I/O node-side cache. The experimental results
prove that both write-back and prefetching strategies provide
a significant performance benefit, whose main source comes
from the efficient utilization of the Blue Gene parallelism and
asynchronous transfers across storage system hierarchy.

The paper shows that the performance may significantly
vary with configuration parameters such as cache sizes, high
and low water marks, and prefetch pool size. Future work
will target automating the parameter selection for performance.
Further, larger-scale evaluations are needed, and we are cur-
rently beginning this work on the larger Intrepid system at
Argonne National Laboratory. Additionally, we plan to per-
form more extensive evaluations of data staging in a congested
system, focusing on torus and tree congestions and file system
load. The goal is to design novel, adaptive data staging policies
that address changes in network congestion, I/O node load, and
file system response time.

ACKNOWLEDGMENTS

This work was supported in part by Spanish Ministry of Sci-
ence and Innovation under the project TIN 2007/6309, by the
U.S. Dept. of Energy under Contracts DE-FC02-07ER25808,
DE-FC02-01ER25485, and DE-AC02-06CH11357, and NSF
HECURA CCF-0621443, NSF SDCIOCI-0724599, and NSF
ST-HEC CCF-0444405.

This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which
is supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-06CH11357.

13

0
 1
 2
 3
 4
 5
 6
 7

1

4

7

10

13

16

19

22

25

28

31

34

37

40

Seconds

It

er
at

io
n

Read time for 64 CN 2 CS buffers

0 msec compute phase

0
 1
 2
 3
 4
 5
 6
 7

1

4

7

10

13

16

19

22

25

28

31

34

37

40

Seconds

It
er

at
io

n

Read time for 64 CN 16 CS buffers

 1000 msec compute phase

Fig. 15. Histograms of the 40 file read operations of BTIO class B times for 64 processors for the best and worse performing cases from Figure 14. The
reads start to hit the cache in phase 19 and 11, respectively.

REFERENCES

[1] International Exascale Software Project. http://www.exascale.org.
[2] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng.

Datastager: scalable data staging services for petascale applications. In
HPDC ’09: Proceedings of the 18th ACM international symposium on
High performance distributed computing, pages 39–48, New York, NY,
USA, 2009. ACM.

[3] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross,
L. Ward, and P. Sadayappan. Scalable I/O Forwarding Framework
for High-Performance Computing Systems. In Proceedings of IEEE
Conference on Cluster Computing, New Orleans, LA, September 2009.

[4] J. G. Blas, F. Isaila, J. Carretero, R. Latham, and R. B. Ross. Multiple-
Level MPI File Write-Back and Prefetching for Blue Gene Systems. In
PVM/MPI, pages 164–173, 2009.

[5] J. G. Blas, F. Isaila, D. E. Singh, and J. Carretero. View-Based Collective
I/O for MPI-IO. In CCGRID, pages 409–416.

[6] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp. Parallel I/O
prefetching using MPI file caching and I/O signatures. In SC ’08, pages
1–12, 2008.

[7] F. Chang and G. Gibson. Automatic I/O Hint Generation Through
Speculative Execution. In Proceedings of OSDI, 1999.

[8] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, and W. Gropp. Hiding I/O
latency with pre-execution prefetching for parallel applications. In SC
’08, pages 1–10, 2008.

[9] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved parallel I/O
via a two-phase run-time access strategy. In Proc. of IPPS Workshop
on Input/Output in Parallel Computer Systems, 1993.

[10] F. Isaila, J. Garcia Blas, J. Carretero, R. Latham, S. Lang, R. Ross.
Latency hiding file I/O for Blue Gene systems. In CCGRID ’09.

[11] http://fuse.sourceforge.net. FUSE Homepage., 2009.
[12] http://www unix.mcs.anl.gov/zeptoos/. ZeptoOs Project., 2008.
[13] http://www.top500.org. Top 500 list.
[14] http://www.unix systems.org/. The Portable Operating System Interface,

1995.
[15] F. Isaila, G. Malpohl, V. Olaru, G. Szeder, and W. Tichy. Integrating

Collective I/O and Cooperative Caching into the “Clusterfile” Parallel
File System. In Proceedings of ACM International Conference on
Supercomputing (ICS), pages 315–324. ACM Press, 2004.

[16] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman. ZOID: I/O-
forwarding infrastructure for petascale architectures. In PPoPP ’08,
pages 153–162, 2008.

[17] M. Kallahalla and P. Varman. PC-OPT: optimal offline prefetching and
caching for parallel I/O systems. Computers, IEEE Transactions on,
51(11):1333–1344, Nov 2002.

[18] D. Kotz. Disk-directed I/O for MIMD Multiprocessors. In Proc. of the
First USENIX Symp. on Operating Systems Design and Implementation,
1994.

[19] W. K. Liao, K. Coloma, A. Choudhary, L. Ward, E. Russel, and
S. Tideman. Collective Caching: Application-Aware Client-Side File
Caching. In Proceedings of the 14th International Symposium on High
Performance Distributed Computing (HPDC), July 2005.

[20] W. K. Liao, K. Coloma, A. N. Choudhary, and L. Ward. Cooperative
Write-Behind Data Buffering for MPI I/O. In PVM/MPI, pages 102–109,
2005.

[21] W. Ligon and R. Ross. An Overview of the Parallel Virtual File System.
In Proceedings of the Extreme Linux Workshop, June 1999.

[22] X. Ma, M. Winslett, J. Lee, and S. Yu. Improving MPI-IO Output
Performance with Active Buffering Plus Threads. In IPDPS, pages 22–
26, 2003.

[23] J. Moreira and et al. Designing a highly-scalable operating system: the
Blue Gene/L story. In SC ’06, page 118, 2006.

[24] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Ellis, and M. Best.
File Access Characteristics of Parallel Scientific Workloads. In IEEE
Transactions on Parallel and Distributed Systems, 7(10), pages 1075–
1089, Oct. 1996.

[25] C. M. Patrick, S. Son, and M. Kandemir. Comparative evaluation of
overlap strategies with study of I/O overlap in MPI-IO. volume 42,
pages 43–49, New York, NY, USA, 2008. ACM.

[26] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka.
Informed prefetching and caching. SIGOPS Oper. Syst. Rev., 29(5):79–
95, 1995.

[27] J.-P. Prost, R. Treumann, R. Hedges, B. Jia, and A. Koniges. MPI-
IO/GPFS, an optimized implementation of MPI-IO on top of GPFS. In
Supercomputing ’01: Proceedings of the 2001 ACM/IEEE conference on
Supercomputing (CDROM), pages 17–17, New York, NY, USA, 2001.
ACM Press.

[28] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, and
B. Clifford. Toward loosely coupled programming on petascale sys-
tems. In SC ’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, pages 1–12, Piscataway, NJ, USA, 2008. IEEE Press.

[29] P. C. Roth. Characterizing the I/O behavior of scientific applications
on the Cray XT. In PDSW ’07: Proceedings of the 2nd international
workshop on Petascale data storage, pages 50–55, New York, NY, USA,
2007. ACM.

[30] Y. H. Sahoo, R. Howson, and et all. High performance file I/O for the
Blue Gene/L supercomputer. HPCA, pages 187–196, 2006.

[31] H. Shan, K. Antypas, and J. Shalf. Characterizing and predicting the
I/O performance of HPC applications using a parameterized synthetic
benchmark. In SC ’08: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, pages 1–12, Piscataway, NJ, USA, 2008. IEEE
Press.

[32] R. Thakur, W. Gropp, and E. Lusk. Data Sieving and Collective I/O in
ROMIO. In Proc. of the 7th Symposium on the Frontiers of Massively
Parallel Computation, pages 182–189, February 1999.

[33] M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa,
M. Hategan, B. Clifford, and I. Raicu. Parallel Scripting for Applications
at the Petascale and Beyond. Computer, 42(11):50–60, 2009.

[34] P. Wong and R. der Wijngaart. NAS Parallel Benchmarks I/O Version
2.4. Technical report, NASA Ames Research Center, 2003.

[35] W. Yu and J. Vetter. ParColl: Partitioned Collective I/O on the Cray XT.
ICPP, pages 562–569, 2008.

[36] W. Yu, J. S. Vetter, and R. S. Canon. OPAL: An Open-Source MPI-IO
Library over Cray XT. In SNAPI ’07, pages 41–46, 2007.

